The P versus NP-complete dichotomy of some challenging problems in graph theory
نویسنده
چکیده
منابع مشابه
The Complexity of Symmetric Boolean Parity Holant Problems - (Extended Abstract)
For certain subclasses of NP, ⊕P or #P characterized by local constraints, it is known that if there exist any problems within that subclass that are not polynomial time computable, then all the problems in the subclass are NP-complete, ⊕P-complete or #P-complete. Such dichotomy results have been proved for characterizations such as Constraint Satisfaction Problems, and directed and undirected ...
متن کاملThe Complexity of Symmetric Boolean Parity Holant Problems
For certain subclasses of NP, ⊕P or #P characterized by local constraints, it is known that if there exist any problems that are not polynomial time computable within that subclass, then those problems are NP-, ⊕Por #P-complete. Such dichotomy results have been proved for characterizations such as Constraint Satisfaction Problems, and directed and undirected Graph Homomorphism Problems, often w...
متن کاملList Partitions
List partitions generalize list colourings and list homomorphisms. Each symmetric matrix M over 0; 1; deenes a list partition problem. Diierent choices of the matrix M lead to many well-known graph the-oretic problems including the problem of recognizing split graphs and their generalizations, nding homogeneous sets, joins, clique cutsets, stable cutsets, skew cutsets and so on. We develop tool...
متن کاملCombinatorial Proof that Subprojective Constraint Satisfaction Problems are NP-Complete
We introduce a new general polynomial-time constructionthe fibre constructionwhich reduces any constraint satisfaction problem CSP(H) to the constraint satisfaction problem CSP(P), where P is any subprojective relational system. As a consequence we get a new proof (not using universal algebra) that CSP(P) is NP -complete for any subprojective (and thus also projective) relational system. The fi...
متن کاملComplexity of Steiner Tree in Split Graphs - Dichotomy Results
Given a connected graph G and a terminal set R ⊆ V (G), Steiner tree asks for a tree that includes all of R with at most r edges for some integer r ≥ 0. It is known from [ND12,Garey et. al [1]] that Steiner tree is NP-complete in general graphs. Split graph is a graph which can be partitioned into a clique and an independent set. K. White et. al [2] has established that Steiner tree in split gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 160 شماره
صفحات -
تاریخ انتشار 2012